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The flux corrected transport (FCT) algorithm of Boris and Book [J. Comput. Phys. 11 
(1973) 38-691 is used to solve the continuity equations for electrons and ions on a non- 
uniform mesh, to facilitate the study of plasma structure near electrodes. It is shown that 
extreme (even abrupt) mesh size changes can be accommodated with negligible distortion of a 
density pulse advecting with a constant velocity. The advection of a pulse by a spatially non- 
uniform velocity field across a non-uniform mesh also gives results comparable with those for 
a uniform mesh. A treatment of diffusion on a variable mesh is also developed and is shown 
to agree well with the analytic solution. 0 1985 Academic RCSS, ~nc. 

1. INTRODUCTION 

Equations describing the drift and diffusion of charged particles in an electric field 
form the starting point for most theoretical studies of gaseous discharges. In many 
problems the electric tield is controlled by space-charge effects, and must therefore be 
obtained from a solution of Poisson’s equation. In these cases the electric field often 
varies strongly in both space and time, and precise numerical algorithms are needed 
to account accurately for charge cancellation in the evaluation of the net charge 
density. A comparison [ 1 ] of several methods that might be used to solve these 
equations identified several advantages of the flux-corrected transport (FCT) 
algorithm of Boris and Book [2]. Examples of the application of this algorithm to 
studies of gaseous discharges may be found in [3,4]. 

Near the electrodes the variation of electric field is particularly steep, and the 
accurate treatment of electrode phenomena usually demands a very fine spatial mesh. 
Since the body of the discharge plasma rarely exhibits the steep gradients associated 
with electrodes, an efficient computational algorithm should allow for a non-uniform 
spatial mesh. In this paper we show how the FCT algorithm may be applied on such 
a non-uniform mesh, and display a number of test cases which demonstrate the 
stability and accuracy of the method. The algorithm follows closely the prescription 
of Boris and Book [5, Eqs. (41)-(48)] and Morrow and Cram [6], with a simple 
extension to account for diffusion. Since the goal of the present paper is to exhibit the 
use of FCT on a nonuniform grid, we consider the drift and diffusion of a single 
species, and do not discuss the application to electrical discharges. 
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2. FCT ON A NON-UNIFORM MESH 

The prototype equation to be solved is 

where D is the diffusion coefficient, p is the particle density and w the drift velocity. 
Boris and Book [5] have presented an FCT algorithm which involves both a non- 
uniform mesh and zone sliding; for our problems, a fixed, non-uniform mesh suffices. 
Let this mesh be defined as the set (x,li= 1, N), so that two interleaved mesh 
spacings may be specified 

6X i+ l/2 = Xi+ 1 - xi (2) 
and 

axi = f(aXi+ l/2 + 6xi- l/2)’ (3) 

In Ref. [6], geometrical arguments involving linear approximations to p(x) are 
used to formulate an FCT algorithm on a non-uniform mesh. An equally heuristic 
formulation may be obtained by following Boris and Book [5], who began with a 
general 3-point explicit approximation to the continuity equation 

p”;+’ = aipy- 1 + bipl + Cipr+ 1. (4) 

In this equation, &“I is a first approximation to the density at point xi at time t”+ ’ ; 
this approximation remains to be “corrected” by later steps in the algorithm. Mass 
will be conserved provided the coefftcients satisfy 

Ui+ IPy + bipl + Ci- IPr =p;T (5) 

and j7 can never be negative if a, b and c are all positive. 
A particular form of (4) on a non-uniform mesh is 
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Equation (6) will satisfy (5) provided 

t it l/2 = w1+1/2 * w-%+ l/2 9 

where w 1+1,2=~wI+%+l ). Any value of v satisfying 
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(8) 

will then ensure that the density is always positive, but algorithms based on this 
inequality are generally subject to strong numerical diffusion. This defect may be 
corrected by introducing anti-diffusive fluxes. The simple explicit SHASTA algorithm 
[51 uses 

Vi+ l/2 =+++;+,,, 

and an anti-diffusive flux 

0. 
6xi+ l/2 

It l/2 = -pit l,2fl~1’ -g+‘) 
6Xi 

with ,u~+~,* = d. A more accurate scheme which is adopted in this paper is the 
Phoenical LPE SHASTA algorithm [7], which has the following form on a non- 
uniform mesh: 

~itl,2=ri+l,2~[~~::-~~+l+~l -* @7+2 -PLJ 

%+1,2 

+ %l 

-(p:,,-p;)+V @:,l-P;)-~~~-P~-l)l], 

~,~l,2=ei~l,2~[~+~~~1:+~~~~ @;+I--Pa 
f I 

+ ~~,-1,2 
3--3;P~-l)++3p:-P;-l)-9%;-I-P:-2)j]. 

(11) 
In this algorithm, one chooses 

1 12 
vt+ 112 = 7 + -j-&i+ l/2 and Pi+ l/2 = $ (1 - 4+ l/2)' (12) 

To prevent the antidiffusive scheme from introducing spurious maxima or minima 
in the solution, or accentuating existing maxima, the antidiffusive flux estimates must 
be limited. The limiting criteria given by Boris and Book [5, Eq. 201 or Zalesak 
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[S, Sect. IV] do not need to be modified when applied on a non-uniform grid. We use 
Zalesak’s flux limiting algorithm for our examples below. The limited antidiffusive 
fluxes {Ji+1,2} may then be used to compute the final value of the updated density 

3. DIFFUSION ON A NON-UNIFORM GRID 

A simple finite difference approximation to the diffusion term in the model 
equation (1) on a non-uniform mesh is 

; D; z 
( i) 

(Di+l+Di>@Y+l -PY)/dXi+ l/2 - (Di +Di- ,)@l--PY- t)/dXi- l/2 

axi+1/2 + 6xi-l/2 
3 (14) 

where Di is the (spatially variable) diffusion coefficient at the mesh point xi. If we 
define 

D i+1/2 = +(Di+Di,,) 

and (1% 

? i+ l/2 = at * Di+ 1/2/d~Xi2+ l/2 9 

the diffusion term by itself gives the following estimate of the updated density: 

py+ ’ = Py + vi+ l/2 
6X. 

~~~+~-P~)-Irl/l~~~-P:-l)’ ii”’ (16) 

Equation (16) may be used either in Eq. (6), by modifying the coefficients v to 

vi+l/2= vi+1/2 + t11+1/2, (17) 

or directly after the application of Eq. (13). In the former case, flux-correction is 
applied to the updated density including the effects of real diffusion. A comparison of 
the methods on a test problem involving simultaneous transport and diffusion of a 
Gaussian pulse revealed only small differences, although the alternative described by 
(17) gave results that were slightly more accurate. 

4. EXAMPLES 

Our first example shows the transport, without diffusion, of a rectangular density 
pulse across the non-uniform mesh defined by 

Xi=Xi-l +SX[ (i = 2..., N), (18) 
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FIG. 1. Results of numerical studies of the transport of a rectangular density pulse over a non- 
uniform mesh. (a) Mesh variation; (b) square wave propagation from left to right over mesh shown in 
(a); (c) position of the square wave after 800 time steps or 36.11 nsec: exact solution (-); uniform 
mesh (0); non-uniform mesh ( x ). 

where x1 = 0, 6x, = 1.0 - 0.75 exp(-((i - M)/k)‘), M = (N- 1)/2 + 1, and K = 
(N - 1)/5. The mesh is then expanded to give the required value of x,. In all cases 
we used N = 101 and, except in the variable-velocity case, w = 3.786 x 10’ cm set-‘. 

Figure la shows how the mesh spacing varies with x and Fig. lb shows the form 
of the pulse as it is transported across the mesh. Figure lc compares the final pulse 
shapes from Fig. l(b) with the corresponding shape at the same time following 
transport across a uniform N-point mesh. The differences between the pulse after 
traversing the non-uniform and uniform meshes are due almost entirely to the 
difticulty of precisely matching the two mesh arrays. It is evident that the pulses 
traverse the non-uniform grid with no significant distortion, and that no parasitic 
structures emerge. 

Encouraged by this success, we considered a second example involving severe and 
sudden distortions in the mesh: 

Xt=Xl-l+6x (i = 2,26) 

x,=xi-l +6x/4 (i = 27, 76), 

xi=ximl+6x (i = 77, lOl), 
where 6x is adjusted to give the required value of x,,,, and x, = 0. 

(19) 
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FIG. 2. Results of numerical studies of the transport of a square wave over an abrupt 4:l step in the 
mesh size. (a) Step mesh variation; (b) square wave propagation from left to right over mesh shown in 
(a); (c) comparison of the solutions after 640 time steps or I = 33.8 1 nsec: exact solution (-); uniform 
mesh (0); step mesh variation ( x ). 
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FIG. 3. The transport of a square wave over the mesh shown in Fig. 2a using a spatially dependent 
velocity field. (a) Velocity variation versus position; (b) square wave propagation from left to right over 
mesh of Fig. 2a with variation in velocity shown in 4a; (c) comparison of the solution after 540 time 
steps or t = 24.61 nsec: uniform mesh (0); non-uniform mesh ( X ); both calculated using the same 
velocity variation. 

Figure 2a exhibits the variation of mesh size with X, Fig. 2b shows a rectangular 
pulse as it traverses the mesh, and Fig. 2c compares the final pulse with the result of 
transport across a uniform mesh. Although there is evidence of slight perturbations 
induced by transport across this highly distorted mesh, the algorithm appears to be 
well-behaved even in this extreme test. We would, however, urge the reader to heed 
the advice of Zalesak [9], and to use smooth mappings from the index {i) to the 
spatial mesh {Xi}. 

The third example (Fig. 3) shows the transport of a rectangular pulse in the 
presence of a non-uniform velocity field, across the non-uniform mesh defined by 
(17). Again, the final pulse compares well with that produced by transport across a 
uniform mesh. 

Our fourth example illustrates a problem similar to those that arise in theoretical 
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FIG. 4. Application to the problem of a continuous source of electrons at an electrode propagating 
from left to right into a non-uniform mesh defined by Eq. (35), using fictitious points inside the 
boundary. (a) Mesh variation; (b) propagation of the electron front from IeR to right for 24 nsec or 200 
time steps. 
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studies of gas discharges. A non-uniform mesh crowded near the origin (an “elec- 
trode”) is defined by the transformation 

Xf = xi-1 + 0.2 (i = 2, lo), 

Xf=Xi-l + SXf (i= 11, lOl), 
(20) 

where Sxi = 1.0 - 0.8 exp(-(i - 10)‘/25), x1 = 0, and the x values are adjusted to 
give the required value of xN. Beginning at t = 0, a steady flux of particles is emitted 
from the electrode and transported across the non-uniform mesh into the body of the 
“plasma.” The steady flux at x1 = 0 is modelled by introducing two fictitious mesh 
points x-r and xm2 within the electrode, and then defining the velocity and density at 
these points by 

P-2 =P-1 =P1 

and 

w-2 = w-, = w, at time t. (21) 

The existence of these fictitious points ensures that the 5-point Phoenical LPE 
SHASTA algorithm (11) can be implemented without special treatment of points 
lying near the boundary. Figure 4 shows the mesh spacing and the transport of the 
step function. 

The final example illustrates the diffusion algorithm (16) on the non-uniform mesh 
(17). The initial pulse has the Gaussian form 

p(x, t = 0) = 10” exp(-x2/3.61 X 10e3), (22) 

and the diffusion constant used is D = 5 x 10’ cm* set-‘. Figure 5 compares the 
analytic solution of the diffusion problem [lo] with two numerical solutions, one 
obtained from a uniform and one from a non-uniform mesh. The algorithm provides 
an accurate numerical description of diffusion on a non-uniform mesh. 
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FIG. 5. Comparisons between analytical and numerical solution of the diffusion equation. (a) Initial 
pulse at f = 0 and diffused pulse at f = 36.11 nsec, after 800 time steps; (b) comparison of solution after 
800 time steps: uniform mesh (0); non-uniform mesh ( x ); analytic solution (-). 
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5. SUMMARY 

The Phoenical LPE SHASTA algorithm of Boris and Book [5] has been applied to 
study transport on a non-uniform mesh. Even for an abrupt step change in mesh size 
of 4:1, there is no sign of the distortions and reflections often referred to in the 
literature on other treatments of non-uniform meshes. The addition of a variable 
velocity to the non-uniform mesh does not cause any additional problems. In all cases 
presented, the total number density of particles is conserved to a very high order of 
accuracy. The agreement of the analytic solution for diffusion with the numerical 
solutions on uniform and non-uniform meshes is excellent, showing that diffusion is 
easily represented on a non-uniform mesh. 

Although the FCT algorithm has been found in practice to be sufficiently accurate 
to meet the rather stringent demands imposed by the presence of space-charge effects 
in gas discharge problems, it must be noted that the method has not yet been placed 
on a rigorous analytic foundation. The heuristic character of the algorithm should 
engender caution in its users, and even greater caution should be exercised in 
problems on non-uniform meshes, since the truncation errors may be large if the 
mesh is not chosen appropriately [ 1 l]. Our test cases show that the algorithm is very 
robust, so that great care is needed in confirming the accuracy of results obtained 
with it. 
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